Kalendarz

<< Październik 2019 >>
Po Wt Śr Cz Pi So Ni
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

Brak wydarzeń.

Partnerzy

Astro-Miejsca


URANIA

100 lat IAU

IAU

Centrum Nauki Kepler

Planetarium Wenus

ERC

Centrum Nauk Przyrodniczych

Orion,serwis,astronomii,PTA

POLSA

Astronomia Nova

Astronarium

forum astronomiczne

IPCN

Portal AstroNet

Puls Kosmosu

Forum Meteorytowe

kosmosnautaNET

kosmosnautaNET

Nauka w Polsce

astropolis

astromaniak

PTMA

PTR

heweliusz

heweliusz

ESA

Astronomers Without Borders

Hubble ESA

Space.com

Space Place

Instructables

Tu pełno nauki

Konkursy

Olimpiady Astronomiczne
Olimpiada Astronomiczna przebiega w trzech etapach.
Zadania zawodów I stopnia są rozwiązywane w warunkach pracy domowej. Zadania zawodów II i III stopnia mają charakter pracy samodzielnej. Zawody finałowe odbywają się w Planetarium Śląskim. Tematyka olimpiady wiąże ze sobą astronomię, fizykę i astronomiczne aspekty geografii. Olimpiady Astronomiczne


Urania Postępy Astronomii - konkurs dla szkół


astrolabium

Organizatorem konkursu astronomicznego jest Fundacja dla Uniwersytetu Jagiellońskiego a patronat nad akcją sprawuje Obserwatorium Astronomiczne im. Mikołaja Kopernika będące instytutem Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego w Krakowie.
Zobacz szczegóły »

astrolabium

konkurs, astronomiczny

AstroSklepy

Astro Schopy
Uniwersał

Planeta Oczu

Astrocentrum

Aktualnie online

> Gości online: 2

> Użytkowników online: 0

> Łącznie użytkowników: 1
> Najnowszy użytkownik: jacek

Odwiedziny gości

Dziś:134
Wczoraj:962
W tym tygodniu:3,041
W tym miesiącu:26,601
W tym roku:564,880
Wszystkich:13,596,667

Ankieta

Gdzie jest Nowa Kelpera?

Lew

LMC

Rak

Wężownik

Smok

Rak

Wszystko o Nas

Logo SA GW, autor Jacek Patka

Forum Astronomiczne PL


BOINC

Classroom

Słoneczny panel

>Dziś jest:

Wschód słońca: 7:38
Zachód słońca: 17:48
>Dzień trwa:
10 Godzin 09 minut
Jest krótszy od najdłuższego dnia o: 8:27
Dane dla:
Żagań
Szerokość: 51°37 N
Długość: 15°19 E
Imieniny obchodzą:
Filip, Salomon, Marcin, Pamfilia, Boleczest, Marek, Antoni, Walentyna

Księżyc


Data: 24-10-2019 01:51:41

faza

Słońce

Na niebie


Mapa Nieba

TheSkyLive

CALSKY

Położenie ISS
The current position of the ISS
tranzyty ISS

Misja KEPLER

ZOONIVERSE odkrywanie planet

EPUP
4106 planet

Astropogoda

Pogoda


sat24, chmury, pogoda

III Prawo Keplera




Czytelnia


vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

Urania, numery archiwalne,przedwojenne

Light Pollution

M-WiFi

gwiazdy,zmienne,poradnik,gazeta,pdf,astronomia,pomiary

vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

astronomia amatorska

KTW'

Astronautilius

KTW'

kreiner, ziemia i wszechświat

kreiner, ziemia i wszechświat

poradnik, miłośnika, astronomii, książka, Tomasz, Rożek

poradnik, miłośnika, astronomii, książka, Rudż, Przemysław

atlas, nieba, książka, astronomia

atlas, księżyca, książka, astronomia

Poradnik Miłośnika Astronomii

Mądre Książki

Video kategoria

> Apollo (1)
> Astronautyka (13)
> Astronomia (28)
> Curiosity (2)
> Fizyka (10)
> Kosmologia (3)
> Nauka (3)
> Rosetta (4)
> Sekcja (29)
> Sonda (3)
> Tutoriale (3)

Neutrina na cenzurowanym: czyżby szalały inaczej niż antyneutrina?

Nauka neutrina Fot: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo Detektor Super-Kamiokande w czasie remontu. W zbiornik z wodą wycelowane są tysiące fotopowielaczy, których zadaniem jest rejestrowanie śladów neutrin. Na co dzień zbiornik całkowicie wypełniony jest wodą i jest w nim zupełnie ciemno. Całkiem symetryczny Wszechświat nie byłby aż tak ciekawym miejscem - cała materia po prostu anihilowałaby z antymaterią. Dlatego naukowcy szukają śladów asymetrii między cząstkami i antycząstkami. Wiele wskazuje na to, że taką asymetrię widać w szaleństwach neutrin i antyneutrin.


"Gdyby nie było żadnej symetrii między materią a antymaterią, świat składałby się tylko z promieniowania. Jest więc podejrzenie, że różne prawa fizyki są troszeczkę inne dla materii i antymaterii i faworyzują materię" - opowiada w rozmowie z PAP badacz neutrin dr Paweł Przewłocki z Narodowego Centrum Badań Jądrowych w Świerku (NCBJ). Wyjaśnia, że badając cząstki i ich antymaterialnych odpowiedników - antycząstki, naukowcy chcą zbadać, dlaczego materii jest we Wszechświecie więcej.

Już wcześniej pokazano, że do asymetrii we Wszechświecie (a dokładniej mówiąc do tzw. łamania symetrii CP) przyczyniają się hadrony (hadronami są np. protony czy neutrony - cząstki składające się z trzech kwarków). Teraz może się okazać, że do tego efektu cegiełkę dokładają dodatkowo neutrina i antyneutrina. Wskazywać na to mogą badania dotyczące oscylacji neutrin i ich antybraci. Chodzi o spontaniczne przemiany, do jakich dochodzi w tych cząstkach (to tzw. zmiana zapachu). Może się okazać, że antyneutrina oscylują rzadziej niż neutrina i nie są w swoich zmianach aż tak "szalone".

Naukowcy uzyskali już ciekawe wyniki, ale na razie jeszcze nie ogłosili odkrycia. Są ostrożni i czekają, aż wyniki się potwierdzą. Tak czy inaczej, badania dotyczące neutrin są spektakularne i warto im się przyjrzeć.

NEUTRINA CZASEM GINĄ

Neutrina to cząstki, które powstają we Wszechświecie w reakcjach jądrowych - np. w gwiazdach, w akceleratorach cząstek czy reaktorach jądrowych. Prawie nie oddziałują z innymi cząstkami i nie tworzą z nimi układów związanych - jak ma to np. miejsce w przypadku kwarków czy elektronów. Neutrina powołane do istnienia podróżują przez Wszechświat i niemal nic nie jest ich w stanie powstrzymać. To słówko "niemal" jest tu jednak kluczem do poznania neutrin. Zdarza się bowiem, że maleńkie neutrino raz na biliony przypadków kiedyś zderzy się z inną cząstką. I można zbadać cząstki, które powstaną w takim zderzeniu.

W PODJAPOŃSKIEJ CIEMNOŚCI

Dlatego naukowcy wpadli na pomysł dość szalonego doświadczenia - eksperymentu T2K - "Tokai to Kamioka". W akceleratorze J-PARC pod miastem Tokai na wchodzie Japonii produkowane są neutrina i wypuszczane są pod ziemią, przez skały, w stronę Kamioki, która leży na zachodzie Japonii - ok. 300 km dalej. Tam z kolei 1 km pod ziemią znajduje się detektor Super-Kamiokande. Jego częścią jest ogromny zbiornik z wodą o średnicy 40 m i 40 m wysokości. Na co dzień w jego wnętrzu jest całkiem ciemno, a w ciemność tę skierowane są tysiące fotopowielaczy, które wychwycą nawet pojedynczy foton. Taki foton może być bowiem śladem po zderzeniu neutrina z cząsteczką wody.

Chociaż przez Super-Kamiokande ciągle przelatuje strumień neutrin z J-PARC, maleńkie rozbłyski są tam rzadkością. Jeśli już jednak rozbłysk jest zarejestrowany, można zbadać, skąd się wziął i dojść do informacji o samym neutrinie - skąd ono leci i jaki jest jego zapach - czy jest to może neutrino mionowe, elektronowe czy może taonowe (to trzy możliwe zapachy, czyli rodzaje neutrina).

Kilka lat temu dzięki eksperymentowi T2K udało się przyłapać neutrina na ich szaleństwach i stwierdzić, że neutrina mionowe wypuszczane z Tokai stają się czasem po drodze neutrinami elektronowymi. Fizycy byli jednak bardzo ciekawi, czy takich samych szaleństw dopuszczają się antyneutrina. Wydawało się, że nie powinno być tu żadnych różnic.

Z eksperymentu jednak na razie wynika, że antyneutrina oscylują trochę rzadziej niż neutrina. "Do tej pory zaobserwowaliśmy tylko 4 antyneutrina elektronowe powstałe z wiązki antyneutrin mionowych. Z modeli wynika tymczasem, że takich przemian w tym czasie powinno być ich ok. 5-6" - opowiada Przewłocki. Ta różnica między oczekiwaniami a rzeczywistością może nie robi dużego wrażenia, ale podobny efekt (choć tylko dla neutrin) zaobserwowali badacze w drugim eksperymencie neutrinowym - to eksperyment NOvA prowadzony w Stanach Zjednoczonych. "Idzie to w tym samym kierunku. Jeśli ta tendencja się utrzyma podczas dalszego zbierania danych, to będzie to wskazówka, że zaczynamy widzieć łamanie tzw. symetrii CP dla neutrin" - komentuje dr Przewłocki.

ANTYMATERIA? NIE WIDZĘ PRZESZKÓD

Może się wydawać, że badanie antymaterii jest ekstremalnie trudne, bo błyskawicznie ona anihiluje, spotykając się z materią. Dr Przewłocki wyjaśnia, że owszem - tak jest np. w przypadku antyprotonów czy antyneutronów. One rzeczywiście szybko trafiają na swoich braci i anihilują. Jednak na badanie antyneutrin jest znacznie więcej czasu. "Antyneutrina - podobnie jak neutrina - bardzo słabo oddziałują z czymkolwiek. Aby doszło do anihilacji, antyneutrino musiałoby wpaść na neutrino" - mówi fizyk z NCBJ. A jest to bardzo mało prawdopodobne - cząstka i jej brat bardzo niechętnie ze sobą oddziałują. O wiele większe jest prawdopodobieństwo, że antyneutrino "zginie" zderzając się z inną cząstką. Np. w detektorze Super-Kamiokande. I na to liczą w swoich eksperymentach badacze.

"Wyniki, które otrzymaliśmy, to dopiero wskazówka, gdzie szukać czegoś ciekawego. A to, czy neutrina rzeczywiście różnią się od antyneutrin, będzie można potwierdzić lub odrzucić dopiero za kilka lat. Pewnie trzeba będzie poczekać na wyniki całkiem nowych eksperymentów" - podsumowuje dr Przewłocki.

W eksperymencie T2K biorą udział naukowcy z Polski. To badacze z NCBJ, Politechniki Warszawskiej, Uniwersytetów: Warszawskiego, Śląskiego oraz Wrocławskiego, a także z Instytutu Fizyki Jądrowej w Krakowie.

Źródło: www.naukawpolsce.pap.pl, Ludwika Tomala



Przeczytaj więcej:

Brak komentarzy. Może czas dodać swój?

Dodaj komentarz

Zaloguj się, aby móc dodać komentarz.

Oceny

Tylko zarejestrowani użytkownicy mogą oceniać zawartość strony
Zaloguj się , żeby móc zagłosować.

Brak ocen. Może czas dodać swoją?
21,654,359 unikalne wizyty