Kalendarz

<< Luty 2020 >>
Po Wt Śr Cz Pi So Ni
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29  

Brak wydarzeń.

Partnerzy

Astro-Miejsca


URANIA

100 lat IAU

IAU

Centrum Nauki Kepler

Planetarium Wenus

ERC

Centrum Nauk Przyrodniczych

Orion,serwis,astronomii,PTA

POLSA

Astronomia Nova

Astronarium

forum astronomiczne

IPCN

Portal AstroNet

Puls Kosmosu

Forum Meteorytowe

kosmosnautaNET

kosmosnautaNET

Nauka w Polsce

astropolis

astromaniak

PTMA

PTR

heweliusz

heweliusz

ESA

Astronomers Without Borders

Hubble ESA

Space.com

Space Place

Instructables

Tu pełno nauki

Konkursy

Olimpiady Astronomiczne
Olimpiada Astronomiczna przebiega w trzech etapach.
Zadania zawodów I stopnia są rozwiązywane w warunkach pracy domowej. Zadania zawodów II i III stopnia mają charakter pracy samodzielnej. Zawody finałowe odbywają się w Planetarium Śląskim. Tematyka olimpiady wiąże ze sobą astronomię, fizykę i astronomiczne aspekty geografii. Olimpiady Astronomiczne


Urania Postępy Astronomii - konkurs dla szkół


astrolabium

Organizatorem konkursu astronomicznego jest Fundacja dla Uniwersytetu Jagiellońskiego a patronat nad akcją sprawuje Obserwatorium Astronomiczne im. Mikołaja Kopernika będące instytutem Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego w Krakowie.
Zobacz szczegóły »

astrolabium

konkurs, astronomiczny

AstroSklepy

Astro Schopy
Uniwersał

Planeta Oczu

Astrocentrum

Aktualnie online

> Gości online: 5

> Użytkowników online: 0

> Łącznie użytkowników: 1
> Najnowszy użytkownik: jacek

Odwiedziny gości

Dziś:300
Wczoraj:2,906
W tym tygodniu:14,995
W tym miesiącu:49,969
W tym roku:100,509
Wszystkich:13,863,880

Ankieta

Gdzie jest Nowa Kelpera?

Lew

LMC

Rak

Wężownik

Smok

Rak

Wszystko o Nas

Logo SA GW, autor Jacek Patka

Forum Astronomiczne PL


BOINC

Classroom

FB

Słoneczny panel

>Dziś jest:

Wschód słońca: 6:56
Zachód słońca: 17:28
>Dzień trwa:
10 Godzin 31 minut
Jest krótszy od najdłuższego dnia o: 8:05
Dane dla:
Żagań
Szerokość: 51°37 N
Długość: 15°19 E
Imieniny obchodzą:
Damian, Romana, Izabela, Polikarp, Marta

Księżyc


Data: 23-2-2020 02:31:44

faza

Słońce

Na niebie


Mapa Nieba

TheSkyLive

CALSKY

Położenie ISS
The current position of the ISS
tranzyty ISS

Misja KEPLER

ZOONIVERSE odkrywanie planet

EPUP
4106 planet

Astropogoda

Pogoda


sat24, chmury, pogoda

III Prawo Keplera




Czytelnia


vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

Urania, numery archiwalne,przedwojenne

Light Pollution

M-WiFi

gwiazdy,zmienne,poradnik,gazeta,pdf,astronomia,pomiary

vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

astronomia amatorska

KTW'

Astronautilius

KTW'

kreiner, ziemia i wszechświat

kreiner, ziemia i wszechświat

poradnik, miłośnika, astronomii, książka, Tomasz, Rożek

poradnik, miłośnika, astronomii, książka, Rudż, Przemysław

atlas, nieba, książka, astronomia

atlas, księżyca, książka, astronomia

Poradnik Miłośnika Astronomii

Mądre Książki

Losowa Fotka

Na UMK szukają ciemnej materii

Astronomia Na UMK szukają ciemnej materii Eksperymenty przy optycznym zegarze atomowym w Krajowym Laboratorium FAMO. Fot. Andrzej Romański / UMK.Fizycy z Uniwersytetu Mikołaja Kopernika (UMK) w Toruniu przeprowadzili laboratoryjne poszukiwania ciemnej materii. Po raz pierwszy do tego celu wykorzystano w sposób eksperymentalny optyczne zegary atomowe. Wyniki badań opublikowano w czasopiśmie ?Nature Astronomy?.


Ciemna materia to tajemniczy składnik Wszechświata, którego własności próbują poznać fizycy i astronomowie. Jak tłumaczy dr Piotr Wcisło z UMK, pierwszy autor publikacji, efekty fizyczne sugerujące istnienie ciemnej materii były do tej pory obserwowane tylko w skali galaktycznej. Wyjaśnienie obserwowanego ruchu ciał wewnątrz galaktyk czy charakterystycznego załamania światła (soczewkowania grawitacyjnego), które dociera do Ziemi, wymagałoby znacznie silniejszego oddziaływania grawitacyjnego niż to, którego źródłem była dostrzegalna materia.

?Zaobserwowanie ciemnej materii w warunkach laboratoryjnych byłoby prawdziwym przełomem? - mówi polski naukowiec.

Fizykom z Torunia udało się wykorzystać narzędzie umożliwiające poszukiwania ciemnej materii i dokonać pomiarów pokazujących, że jeżeli ciemna materia faktycznie istnieje, to nie oddziałuje ze zwykłą materią bardziej niż pewna wyznaczona wartość. Tym narzędziem był optyczny zegar atomowy.

Z obserwacji astronomicznych wiadomo, iż ciemnej materii jest kilkakrotnie więcej niż materii znanej nam na co dzień. Ciemna materia jest niewidoczna, a jedyny sposób, w jaki wnioskujemy o jej istnieniu, to obserwacje efektów jej oddziaływania grawitacyjnego na zwykłą materię. Jest kilka hipotez próbujących wyjaśnić ten stan rzeczy. Poszukuje się np. cząstek elementarnych, które mogłyby być odpowiedzialne za ciemną materię. Innym pomysłem jest korekta teorii grawitacji, w której być może trzeba uwzględnić jakiś czynnik korygujący w zależności siły grawitacji od odległości (tzw. teorie zmodyfikowanej grawitacji).

Polscy naukowcy sprawdzili jeszcze inną hipotezę, według której być może istnieją makroskopowe obiekty ciemnej materii, tzw. defekty topologiczne. Mogły one powstać we wczesnym, szybko ochładzającym się Wszechświecie. Taki defekt można sobie wyobrazić jako ścianę o nieznanej grubości, która ?przelatuje? przez Wszechświat.

?Jeżeli taki obiekt przemknie przez Krajowe Laboratorium Fizyki Atomowej, Molekularnej i Optycznej (FAMO) i jeśli jakkolwiek sprzęga się ze standardową materią, którą znamy, to w tym momencie najczulsze urządzenia na świecie, jakim jest optyczny zegar atomowy, zacznie >tykać< nieco inaczej?
- wyjaśnia dr Wcisło.

Na UMK szukają ciemnej materii Eksperymenty przy optycznym zegarze atomowym w Krajowym Laboratorium FAMO. Fot. Andrzej Romański / UMK. Nad takim rodzajem eksperymentu fizycy na świecie zastanawiali się już wcześniej, ale zakładano, że do pomiarów, oprócz podstawowego zegara atomowego, potrzebny jest jeszcze referencyjny w bardzo oddalonym miejscu. Wymagałoby to odpowiedniego połączenia światłowodowego np. pomiędzy Polską a Japonią.

Jednak dr Wcisło wpadł na inny pomysł, pozwalający na zastosowanie tylko jednego zegara atomowego. Okazuje się, że jako wzorzec częstości można potraktować nie tylko ultrazimne atomy, ale także wnękę optyczną ? jeden ze standardowych elementów zegara atomowego. Częstotliwości światła pochłanianego przez atomy oraz przechodzącego przez wnękę inaczej zareagują na spotkanie z poszukiwanym obiektem. Jego obecność zamanifestuje się jako różnica tych dwóch częstotliwości.

Prof. Roman Ciuryło z UMK wskazuje, iż zegary atomowe wykorzystujące ultrazimne atomy i wnęki optyczne znane są od lat, ale jak dotąd eksperymentatorzy nie dostrzegli tego potencjału. Proste połączenie faktów, jak w przypadku eksperymentu toruńskiej grupy, doprowadziło do ciekawych konsekwencji.

Nowa metoda poszukiwań ciemnej materii pozwala na ustalenie kolejnych ograniczeń dotyczących własności ciemnej materii. Dzięki temu będzie można sprawdzić i odrzucić hipotezy, które są błędne. Ale metoda pozwala potencjalnie także na realną detekcję ciemnej materii. Na dodatek jest bardzo ekonomiczna: nie trzeba budować specjalnych, drogich laboratoriów, bowiem dane w eksperymencie uzyskiwane są z już istniejącego urządzenia, zbudowanego do innych celów naukowych.

?To, że możemy dziś testować takie pomysły, jest plonem wysiłków ogólnopolskiego środowiska uczonych zajmujących się fizyką atomową, molekularną i optyczną podjętych na początku tego stulecia. Dzięki temu, że powstało KL FAMO, możliwe było w Polsce rozwijanie ultranowoczesnych technologii oraz takich gałęzi fizyki, których osiągnięcia pozwoliły na budowę Polskiego Optycznego Zegara Atomowego. To z kolei dało szansę na zmierzenie się z jedną z bardziej fascynujących zagadek Wszechświata? - podkreśla prof. Ciuryło.

Grupa badawcza z Zakładu Fizyki Atomowej, Molekularnej i Optycznej Instytutu Fizyki UMK pracowała w składzie: dr Piotr Wcisło, dr inż. Piotr Morzyński, dr Marcin Bober, dr Agata Cygan, dr hab. Daniel Lisak, prof. UMK, dr hab. Roman Ciuryło, prof. UMK oraz dr hab. Michał Zawada.

Wszystkie pomiary wykonano w Krajowym Laboratorium Fizyki Atomowej, Molekularnej i Optycznej (KL FAMO) przy użyciu Polskiego Optycznego Zegara Atomowego (POZA), zbudowanego dwa lata temu przez naukowców z Uniwersytetu Warszawskiego, Uniwersytetu Jagiellońskiego i Uniwersytetu Mikołaja Kopernika w Toruniu.

Źródło: www.naukawpolsce.pap.pl
Brak komentarzy. Może czas dodać swój?

Dodaj komentarz

Zaloguj się, aby móc dodać komentarz.

Oceny

Tylko zarejestrowani użytkownicy mogą oceniać zawartość strony
Zaloguj się , żeby móc zagłosować.

Brak ocen. Może czas dodać swoją?
21,980,241 unikalne wizyty