EPUP |
5282 planet |
Astronomowie wiedzą już, że planety wokół innych gwiazd są liczne. Ale nie do końca rozumieją w jaki sposób powstają – zagadką pozostaje wiele aspektów powstawania komet, planet i innych skalistych ciał. Nowe obserwacje wykorzystujące moc ALMA udzieliły odpowiedzi na jedno z najważniejszych pytań: w jaki sposób małe ziarna pyłu w dysku wokół gwiazdy staja się coraz większe, aby w końcu przybrać postać gruzu, a nawet głazów o rozmiarach przekraczających jeden metr.
Modele komputerowe sugerują, że ziarna pyłu rosną poprzez zderzenia i sklejanie ze sobą. Jednak gdy większe ziarna zderzają się ponownie z dużymi prędkościami, często są rozrywane na kawałki i wracają do punktu wyjścia. Nawet jeśli tak się nie stanie, to modele pokazują, że większe ziarna szybko przemieściłyby się do wewnątrz, z powodu tarcia pomiędzy pyłem i gazem, a potem spadły na gwiazdę, nie pozostawiając szans na dalszy wzrost w przyszłości.
Pył potrzebuje jakiegoś bezpiecznego sposobu na to, aby cząstki mogły kontynuować wzrost rozmiarów, dopóki nie będą na tyle duże, że same sobie poradzą [1]. Takie „pułapki na pył” były już proponowane, ale brakowało obserwacyjnych dowodów ich istnienia.
Nienke van der Marel, doktorant w Leiden Observatory w Holandii, główny autor publikacji, wspólnie ze współpracownikami użył sieci ALMA, aby zbadać dysk w systemie o nazwie Oph-IRS 48 [2]. Okazało się, że gwiazda jest otoczona przez pierścień gazu z centralną dziurą, która przypuszczalnie została wytworzona przez niewidoczną planetę lub gwiazdę. Wcześniejsze obserwacje za pomocą należącego do ESO Bardzo Dużego Teleskopu (VLT) pokazały, że małe cząstki pyłu także utworzyły podobną strukturę pierścienia. Nowy obraz z ALMA, na którym wykryto większe cząstki pyłu, o rozmiarach milimetrów, jest jednak bardzo różny!
„Na początku kształt pyłu na zdjęciu był dla nas kompletną niespodzianką” powiedział van der Marel. „Zamiast pierścienia, który spodziewaliśmy się zobaczyć, znaleźliśmy wyraźny kształt przypominający orzech nerkowca! Musieliśmy przekonać się, że struktura ta jest realna, ale silny sygnał i ostrość obserwacji ALMA nie pozostawiły wątpliwości co do tego. Dopiero wtedy zrozumieliśmy co odkryliśmy.”
Odkryty został obszar, w którym większe ziarna pyłu zostały schwytane w pułapkę i mogą dalej zwiększać swoje rozmiary poprzez zderzenia i sklejanie się. To właśnie jest pyłowa pułapka, której poszukiwali teoretycy.
Jak wyjaśnia van der Marel: „Wydaje się, że patrzymy na coś rodzaju fabryki komet, gdyż warunki są odpowiednie do tego, aby ziarna rosły z rozmiarów milimetrowych do wielkości komet. W tej odległości do gwiazdy pył raczej nie uformuje pełnowymiarowych planet. Ale w niedalekiej przyszłości ALMA będzie w stanie zaobserwować pułapki na pył położone bliżej gwiazd, w których działają takie same mechanizmy i które mogą być kołyskami dla nowonarodzonych planet.”
Pułapka na pył tworzy się gdy większe ziarna pyłu poruszają się w kierunku obszarów o wyższym ciśnieniu. Obliczenia numeryczne pokazują, że tego typu rejony wysokiego ciśnienia mogą powstawać w wyniki ruchów gazu na brzegach dziury - dokładnie tak jak pułapka znaleziona w opisywanym dysku.
„Połączenie modeli teoretycznych i wysokiej jakości obserwacji z ALMA uczyniło projekt unikalnym” mówi Cornelis Dullemond from the Institute for Theoretical Astrophysics in Heidelberg (Niemcy), który jest ekspertem od ewolucji pyłu i modelowania dysków, a także członkiem zespołu. „Mniej więcej w czasie gdy uzyskano obserwacje pracowaliśmy nad modelami przewidującymi dokładnie ten rodzaj struktur: bardzo szczęśliwy zbieg okoliczności.”
Obserwacje wykonane w okresie, gdy sieć ALMA nadal był w trakcie budowy. Użyto odbiorników ALMA w paśmie 9 [3] – urządzeń wykonanych w Europie, które umożliwiają teleskopowi uzyskiwanie najostrzejszych jak do tej pory obrazów.
„Obserwacje te pokazują, że sieć ALMA jest zdolna zmieniać naukę nawet za pomocą mniej niż połowy pełnej sieci anten” mówi Ewine van Dishoeck z Leiden Observatory, który wnosił wielki wkład w projekt ALMA przez ponad 20 lat. „Niesamowity skok zarówno w czułości, jak i ostrości obrazów w paśmie 9 daje nam szansę na badania podstawowych aspektów powstawania planet w sposób, który wcześniej był po prostu niemożliwy.”
[1] Przyczyna pyłowej pułapki, w tym przypadku wir w gazowym dysku, ma zwykle czas życia rzędu setek tysięcy lat. Nawet jeśli pułapka na pył przestanie działać, zakumulowany wcześniej pył potrzebuje milionów lat na rozproszenie się, zapewniając ziarnom wystarczającą ilość czasu na wzrost rozmiarów.
[2] Nazwa jest kombinacją nazwy konstelacji, w której widać obszar gwiazdotwórczy ze znalezionym systemem oraz typu źródła. Czyli Oph jest skrótem od gwiazdozbioru Wężownika (Ophiuchus), natomiast IRS oznacza źródło podczerwone. Odległość między Ziemią, a Oph-IRS 48 wynosi około 400 lat świetlnych.
[3] ALMA może obserwować w różnych pasmach. Pasmo 9, pokrywające fale o długości około 0,4-0,5 milimetra, jest trybem, w którym obecnie uzyskuje się najostrzejsze obrazy.
Międzynarodowy kompleks astronomiczny ALMA działa w ramach partnerstwa pomiędzy Europą, Ameryką Północną i Azją Wschodnią, we współpracy z Chile. ALMA jest finansowana w Europie przez Europejskie Obserwatorium Południowe (ESO), w Ameryce Północnej przez U.S. National Science Foundation (NSF), we współpracy z National Research Council of Canada (NRC) oraz National Science Council of Tajwan (NSC), a w Azji Wschodniej przez National Institutes of Natural Sciences (NINS) of Japan, we współpracy z Academia Sinica (AS) na Tajwanie. Konstrukcja i użytkowanie ALMA w imieniu Europy jest kierowane przez ESO, w imieniu Ameryki Północnej przez National Radio Astronomy Observatory (NRAO), zarządzane przez Associated Universities, Inc. (AUI), a w imieniu Azji Wschodniej przez National Astronomical Observatory of Japan (NAOJ). Joint ALMA Observatory (JAO) umożliwia wspólne kierowanie i zarządzanie konstrukcją, testowaniem i użytkowaniem ALMA.
Wyniki badań zaprezentowano w artykule “A major asymmetric dust trap in a transition disk“,van der Marel et al, który ukaże się 7 czerwca 2013 r. w czasopiśmie Science.
Skład zespołu badawczego: Nienke van der Marel (Leiden Observatory, Leiden, Holandia), Ewine F. van Dishoeck (Leiden Observatory; Max-Planck-Institut für Extraterrestrische Physik Garching, Niemcy [MPE]), Simon Bruderer (MPE), Til Birnstiel (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA [CfA]), Paola Pinilla (Heidelberg University, Heidelberg, Niemcy), Cornelis P. Dullemond (Heidelberg University), Tim A. van Kempen (Leiden Observatory; Joint ALMA Offices, Santiago, Chile), Markus Schmalzl (Leiden Observatory), Joanna M. Brown (CfA), Gregory J. Herczeg (Kavli Institute for Astronomy and Astrophysics, Peking University, Pekin, Chiny), Geoffrey S. Mathews (Leiden Observatory) oraz Vincent Geers (Dublin Institute for Advanced Studies, Dublin, Irlandia).
ESO jest wiodącą międzyrządową organizacją astronomiczną w Europie i najbardziej produktywnym obserwatorium astronomicznym na świecie. Jest wspierane przez 15 krajów: Austria, Belgia, Brazylia, Czechy, Dania, Finlandia, Francja, Hiszpania, Holandia, Niemcy, Portugalia, Szwajcaria, Szwecja, Wielka Brytania oraz Włochy. ESO prowadzi ambitne programy dotyczące projektowania, konstrukcji i użytkowania silnych naziemnych instrumentów obserwacyjnych, pozwalając astronomom na dokonywanie znaczących odkryć naukowych. ESO odgrywa wiodącą rolę w promowaniu i organizowaniu współpracy w badaniach astronomicznych. ESO zarządza trzema unikalnymi, światowej klasy obserwatoriami w Chile: La Silla, Paranal i Chajnantor. W Paranal ESO posiada Bardzo Duży Teleskop (Very Large Telescope), najbardziej zaawansowane na świecie astronomiczne obserwatorium w świetle widzialnym oraz dwa teleskopy do przeglądów. VISTA pracuje w podczerwieni i jest największym na świecie instrumentem do przeglądów nieba, natomiast VLT Survey Telescope to największy teleskop dedykowany przeglądom nieba wyłącznie w zakresie widzialnym. ESO jest europejskim partnerem dla rewolucyjnego teleskopu ALMA, największego istniejącego projektu astronomicznego. ESO planuje obecnie 39-metrowy Ogromnie Wielki Teleskop Europejski (European Extremely Large optical/near-infrared Telescope - E-ELT), który stanie się “największym okiem świata na niebo”.