Partnerzy

Astro-Miejsca


URANIA

astroturystyka

100 lat IAU

IAU

Comet

Centrum Nauki Kepler

Planetarium Wenus

ERC

Centrum Nauk Przyrodniczych

Orion,serwis,astronomii,PTA

POLSA

Astronomia Nova

Astronarium

forum astronomiczne

IPCN

Portal AstroNet

Puls Kosmosu

Forum Meteorytowe

kosmosnautaNET

kosmosnautaNET

Nauka w Polsce

astropolis

astromaniak

PTMA

PTR

heweliusz

heweliusz

ESA

Astronomers Without Borders

Hubble ESA

Space.com

Space Place

Instructables

Tu pełno nauki

Konkursy

Olimpiady Astronomiczne
Olimpiada Astronomiczna przebiega w trzech etapach.
Zadania zawodów I stopnia są rozwiązywane w warunkach pracy domowej. Zadania zawodów II i III stopnia mają charakter pracy samodzielnej. Zawody finałowe odbywają się w Planetarium Śląskim. Tematyka olimpiady wiąże ze sobą astronomię, fizykę i astronomiczne aspekty geografii. Olimpiady Astronomiczne


Urania Postępy Astronomii - konkurs dla szkół


astrolabium

Organizatorem konkursu astronomicznego jest Fundacja dla Uniwersytetu Jagiellońskiego a patronat nad akcją sprawuje Obserwatorium Astronomiczne im. Mikołaja Kopernika będące instytutem Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego w Krakowie.
Zobacz szczegóły »

astrolabium

konkurs, astronomiczny

AstroSklepy

Serwis Astro - 30 lat AstroDoświadczenia!

Astro Schopy
 Firma ScopeDome

Planeta Oczu

Astrocentrum

Wszystko o Nas

Logo SA GW, autor Jacek Patka





Forum Astronomiczne PL


BOINC

Classroom

FB

Księżyc


Data: 14-7-2025 23:28:57

faza

Słońce

Na niebie


La Lune

Mapa Nieba

Stellarium Web

TheSkyLive
Skytinel - sieć stacji bolidowych - SN15

Położenie JWST
Where is WEBB


ARTEMIS
ARTEMIS-1


Położenie ISS
The current position of the ISS
tranzyty ISS


The current position of the ISS

Misja KEPLER

ZOONIVERSE odkrywanie planet

EPUP
5282 planet

Astropogoda

Pogoda



sat24, chmury, pogoda


wyładowania atmosferyczne


III Prawo Keplera




Czytelnia


dwumiesięcznik

Urania, numery archiwalne,przedwojenne

Light Pollution

M-WiFi

gwiazdy,zmienne,poradnik,gazeta,pdf,astronomia,pomiary

vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

astronomia amatorska

Astronautilius

KTW'

kreiner, ziemia i wszechświat

poradnik, miłośnika, astronomii, książka, Tomasz, Rożek

poradnik, miłośnika, astronomii, książka, Rudż, Przemysław

atlas, nieba, książka, astronomia

atlas, księżyca, książka, astronomia

Poradnik Miłośnika Astronomii

Mądre Książki

Międzynarodowy Dzień Liczby Pi

Wydarzenia pi zaczęło się od 3.14Datę 14 marca w notacji amerykańskiej zapisuje się jako 3.14, co kojarzy się z przybliżeniem liczby pi. Wiele amerykańskich szkół obchodzi wtedy święto matematyki tzw. Pi Day [czyt. pajdej]. Warto przypomnieć, że dzień ten jest jednocześnie rocznicą urodzin Wacława Sierpińskiego i Alberta Einsteina.

Zwyczaj ten przywędrował także do Polski.


Liczba π (długość jednostkowego półokręgu lub pole jednostkowego koła) interesowała matematyków od dawna. Już w III wieku p.n.e. Archimedes oszacował jej wartość z dokładnością do 0.002, przybliżając obwód koła z góry i z dołu obwodami wpisanego weń i opisanego na nim 96-kąta foremnego. Jest on również wynalazcą słynnego wymiernego przybliżenia liczby π jako 22/7, co daje lepszą dokładność niż poprzednie przybliżenie i jest nie tylko najlepszym wśród ułamków o mianowniku nie większym od 7, ale wśród wszystkich dat rocznych w polskiej notacji (i rzecz jasna lepszym niż 3,14). To za sprawą tego właśnie przybliżenia liczba π nazywana była liczbą Archimedesa.

Później przyjęła się na π również nazwa ludolfina, na pamiątkę niemieckiego matematyka i szermierza Ludolfa van Ceulena [wym. fan kölena], który w 1610 roku obliczył ją z dokładnością do 35 miejsc po przecinku, stosując metodę Archimedesa i przybliżając obwód koła obwodem wielokątów foremnych (wpisanego i opisanego) o 262 bokach.

Oznaczanie liczby π tą właśnie literą greckiego alfabetu (pierwszą literą słowa perímetros, co znaczy obwód) zostało wprowadzone na początku XVIII wieku przez angielskiego matematyka Williama Jonesa, a spopularyzowane w pracy Leonarda Eulera z 1736 roku.

W XVII wieku zarzucono geometryczne sposoby obliczania kolejnych cyfr rozwinięcia liczby π i zwrócono się w stronę teorii szeregów. Najbardziej znanym przykładem szeregu związanego z π jest tzw. naprzemienny szereg Liebniza, otrzymany jako wartość w jedynce szeregu Maclaurina funkcji arctg x

Do niewątpliwych pechowców wśród badaczy liczby π zaliczyć należy Anglika - Wiliama Shanksa. W 1853 roku ogłosił on wyniki swoich obliczeń aż do... 530 miejsca po przecinku (pamiętajmy, że robił je ołówkiem na papierze!). Pracując przez następnych 20 lat zdołał obliczyć kolejnych 177 cyfr. Niestety, okazało się, że poprzedni wynik zawierał błąd na 528 miejscu i wszystko można było wyrzucić do kosza. Na szczęście Shanks wykrycia tego błędu nie doczekał. Jego następcy zaprzęgli już do pracy maszyny liczące. Z 1948 roku pochodzą pierwsze wyniki otrzymane przy pomocy arytmometru (to taka 'maszynka z korbką'). A. Smith i J. Wrench obliczyli w ten sposób 808 cyfr rozwinięcia π (myląc się jednak od 723 miejsca). Potem przyszła kolej na maszyny elektroniczne i rachunki "ruszyły z kopyta". Prekursorem był tu G. Reitwiesner, który w 1949 roku na maszynie ENIAC obliczył 2037 cyfr rozwinięcia π.

Powstało pytanie, skąd matematycy mają wiedzieć, czy otrzymany w ten sposób wynik jest poprawny? Otóż za sprawdzenie przyjmuje się otrzymanie tego samego wyniku inną metodą i na innej maszynie. I tak pierwszy milion cyfr rozwinięcia π został przekroczony w 1974 roku, a sprawdzony dopiero po 11 latach.

Do dziś obliczono π z dokładnością do ponad biliona miejsc dziesiętnych. Powstaje jednak pytanie "po co?". Przecież dla potrzeb techniki wystarcza znajomość 3-4 miejsc dziesiętnych, a w obliczeniach astronomicznych, gdzie występują duże liczby (które powodują duże błędy), wystarcza zupełnie 6-8 miejsc.Istnieje jednak wiele interesujących teoretycznych pytań dotyczących rozwinięcia liczby π. Wiadomo, że rozwinięcie to nie jest okresowe (bo π jest liczbą niewymierną, co udowodnił niemiecki matematyk Jan Lambert w 1768 roku), ale może istnieje jakaś prawidłowość w pojawianiu się kolejnych cyfr? Czy wszystkie cyfry pojawiają się tak samo często? Czy wszystkie pojawiają się nieskończenie wiele razy? Czy w rozwinięciu dziesiętnym π można odnaleźć wszystkie liczby naturalne?

π-ciekawostki
Jeśli chcesz sprawdzić, gdzie w rozwinięciu liczby π występuje np. Twoja data urodzenia, zajrzyj na stronę, gdzie opublikowano pierwszy milion cyfr tego rozwinięcia: www.3141......4459.com

Może zrobić to za Ciebie komputer na stronie:LINK .

Jeśli chcesz posłuchać liczby π, wiedząc, że każdej liczbie odpowiada pewna wysokość (częstotliwość) dźwięku, to melodii wygrywanej przez kolejne cyfry rozwinięcia π możesz posłuchać na stronie: LINK.

W dziale Mat-szarady możesz rozwiązać ciekawe pi-busy, czyli rebusy z liczbą pi.

Małgorzata Mikołajczyk



Przeczytaj więcej:

Brak komentarzy. Może czas dodać swój?

Dodaj komentarz

Zaloguj się, aby móc dodać komentarz.

Oceny

Tylko zarejestrowani użytkownicy mogą oceniać zawartość strony
Zaloguj się , żeby móc zagłosować.

Brak ocen. Może czas dodać swoją?
32,852,144 unikalne wizyty