Partnerzy

Astro-Miejsca


URANIA

astroturystyka

100 lat IAU

IAU

Comet

Centrum Nauki Kepler

Planetarium Wenus

ERC

Centrum Nauk Przyrodniczych

Orion,serwis,astronomii,PTA

POLSA

Astronomia Nova

Astronarium

forum astronomiczne

IPCN

Portal AstroNet

Puls Kosmosu

Forum Meteorytowe

kosmosnautaNET

kosmosnautaNET

Nauka w Polsce

astropolis

astromaniak

PTMA

PTR

heweliusz

heweliusz

ESA

Astronomers Without Borders

Hubble ESA

Space.com

Space Place

Instructables

Tu pełno nauki

Konkursy

Olimpiady Astronomiczne
Olimpiada Astronomiczna przebiega w trzech etapach.
Zadania zawodów I stopnia są rozwiązywane w warunkach pracy domowej. Zadania zawodów II i III stopnia mają charakter pracy samodzielnej. Zawody finałowe odbywają się w Planetarium Śląskim. Tematyka olimpiady wiąże ze sobą astronomię, fizykę i astronomiczne aspekty geografii. Olimpiady Astronomiczne


Urania Postępy Astronomii - konkurs dla szkół


astrolabium

Organizatorem konkursu astronomicznego jest Fundacja dla Uniwersytetu Jagiellońskiego a patronat nad akcją sprawuje Obserwatorium Astronomiczne im. Mikołaja Kopernika będące instytutem Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego w Krakowie.
Zobacz szczegóły »

astrolabium

konkurs, astronomiczny

AstroSklepy

Serwis Astro - 30 lat AstroDoświadczenia!

Astro Schopy
 Firma ScopeDome

Planeta Oczu

Astrocentrum

Wszystko o Nas

Logo SA GW, autor Jacek Patka





Forum Astronomiczne PL


BOINC

Classroom

FB

Księżyc


Data: 23-2-2025 00:01:15

faza

Słońce

Na niebie


La Lune

Mapa Nieba

Stellarium Web

TheSkyLive
Skytinel - sieć stacji bolidowych - SN15

Położenie JWST
Where is WEBB


ARTEMIS
ARTEMIS-1


Położenie ISS
The current position of the ISS
tranzyty ISS


The current position of the ISS

Misja KEPLER

ZOONIVERSE odkrywanie planet

EPUP
5282 planet

Astropogoda

Pogoda



sat24, chmury, pogoda


wyładowania atmosferyczne


III Prawo Keplera




Czytelnia


dwumiesięcznik

Urania, numery archiwalne,przedwojenne

Light Pollution

M-WiFi

gwiazdy,zmienne,poradnik,gazeta,pdf,astronomia,pomiary

vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

astronomia amatorska

Astronautilius

KTW'

kreiner, ziemia i wszechświat

poradnik, miłośnika, astronomii, książka, Tomasz, Rożek

poradnik, miłośnika, astronomii, książka, Rudż, Przemysław

atlas, nieba, książka, astronomia

atlas, księżyca, książka, astronomia

Poradnik Miłośnika Astronomii

Mądre Książki

Egzotyczne jądra atomowe coraz lepiej znane

Nauka w japońskim ośrodku RIKEN Nishina Center Przyszłe eksperymenty w japońskim ośrodku RIKEN Nishina Center pozwolą zweryfikować model jąder atomowych zaproponowany przez dr. Krzysztofa Miernika z Instytutu Fizyki Doświadczalnej Wydziału Fizyki Uniwersytetu Warszawskiego. Źródło: Wikimedia CommonsNowy model opisu jąder atomowych, przedstawiony przez fizyka z Wydziału Fizyki Uniwersytetu Warszawskiego, pozwala dokładniej przewidywać właściwości egzotycznych izotopów powstających w wybuchach supernowych oraz w nowoczesnych reaktorach nuklearnych.


Współczesna aparatura badawczo-pomiarowa nie jest w stanie wytworzyć i zarejestrować wielu egzotycznych izotopów powstających w wybuchach supernowych i we wnętrzach reaktorów jądrowych. W efekcie znaczna liczba jąder atomowych wciąż pozostaje nieznana. Przewidywanie niektórych ich właściwości będzie teraz łatwiejsze – dzięki nowemu modelowi opisu jąder atomowych, zaprezentowanemu niedawno przez dr. Krzysztofa Miernika z Wydziału Fizyki Uniwersytetu Warszawskiego (FUW). O badaniach, które ukazały się w czasopiśmie "Physical Review Letters C", poinformował FUW w przesłanym PAP komunikacie.

Współczesne modele teoretyczne jąder atomowych można podzielić na dwie grupy. „Opisy wychodzące od najbardziej podstawowych zasad kwantowo-mechanicznych są możliwe do wyprowadzenia tylko dla prostych jąder, liczących nie więcej niż kilkanaście cząstek, natomiast modele statystyczne działają świetnie, tyle że na naprawdę dużych zbiorach danych. No i mamy problem, bo liczba protonów i neutronów w większości jąder atomowych jest pośrednia: dostatecznie duża, by praktycznie uniemożliwić dokładny opis, i jednocześnie tak mała, że opis statystyczny pozostaje nieprecyzyjny” - mówi dr Miernik.

Współczesna fizyka zna cztery oddziaływania fundamentalne: grawitacyjne, elektromagnetyczne, jądrowe silne i jądrowe słabe. Grawitacja działa między obiektami mającymi masę i kształtuje Wszechświat w skalach kosmicznych. Elektromagnetyzm wiąże ujemnie naładowane elektrony z dodatnimi jądrami atomowymi tworząc atomy, które możemy obserwować dzięki jego nośnikom: fotonom. Oddziaływania jądrowe silne „sklejają” kwarki w protony i neutrony, podstawowe składniki jąder atomowych. Na tym tle oddziaływania jądrowe słabe wydają się mało znaczące.

„Nic bardziej mylnego! Oddziaływania jądrowe słabe pełnią bardzo ważną rolę: to dzięki nim jedne cząstki jądrowe mogą się zmieniać w inne. Gdyby nie oddziaływania słabe, we Wszechświecie nie byłoby wielu pierwiastków” - stwierdza dr Miernik.

Podstawowymi fabrykami pierwiastków we Wszechświecie są gwiazdy. Zachodzące w nich reakcje termojądrowe nie są jednak w stanie wytworzyć jąder atomowych cięższych od żelaza. Na szczęście dzięki oddziaływaniom słabym w jądrach dochodzi niekiedy do przemiany beta minus: neutron zmienia się w proton i dwie inne cząstki, elektron i antyneutrino elektronowe, które szybko „uciekają” z jądra. Wskutek przemian beta minus liczba protonów w jądrze atomowym się zwiększa, co za każdym razem oznacza narodziny nowego pierwiastka.

„Ciekawe rzeczy dzieją się nie tylko w trakcie przemiany beta, ale także po niej. Nowe jądro może być wzbudzone energetycznie. Jeśli ma zbliżone liczby neutronów i protonów, prawdopodobnie pozbędzie się nadmiaru energii po prostu emitując promieniowanie gamma. Jeśli jednak w jądrze jest duży nadmiar neutronów, może pozbyć się energii emitując neutron. Mamy więc najpierw przemianę beta, a po niej opóźnioną emisję neutronu” - wyjaśnia dr Miernik.

Opóźniona emisja neutronów z jąder atomowych to proces o istotnym znaczeniu w astrofizyce. Podczas wybuchów supernowych uwalniane są ogromne ilości neutronów, z których część jest wychwytywana przez jądra atomowe. Jedna z głównych ścieżek produkcji nowych pierwiastków, odpowiedzialna za powstanie mniej więcej połowy izotopów cięższych od żelaza, prowadzi wówczas właśnie przez przemianę beta minus połączoną z emisją neutronów opóźnionych.

„Brak wiedzy o egzotycznych jądrach atomowych, tworzących się w wybuchach supernowych, to prawdziwa przeszkoda w pełnym zrozumieniu zachodzących wówczas zjawisk” - mówi dr Miernik.

Opóźniona emisja neutronów ma znaczenie także na Ziemi: umożliwia relatywnie łatwą kontrolę przebiegu reakcji jądrowych w reaktorach atomowych. Gdyby podczas rozpadu uranu wszystkie neutrony uwalniały się natychmiast, każda reakcja byłaby łańcuchowa i prowadziła do eksplozji nuklearnej. Na szczęście świat działa inaczej. Choć w rozpadach uranu tylko jeden neutron na kilkadziesiąt jest emitowany z opóźnieniem, ta niewielka liczba wystarcza do kontrolowania reakcji.

Wskutek rozpadu uranu może powstać ok. 270 jąder atomowych emitujących neutrony opóźnione. Pomiary ich własności są jednak trudne. Z uwagi na krótki czas życia, większość tych jąder atomowych trzeba wytwarzać sztucznie. Co więcej, detekcja neutronów, niosących informację o przebiegu rozpadu, wymaga użycia drogich i mało wydajnych detektorów. W efekcie współczesna fizyka zna własności niewiele ponad 1/3 rodzajów jąder atomowych z tej grupy.

„Spójrzmy okiem konstruktora. Jeśli w reaktorze tworzą się jakieś jądra atomowe, warto przecież wiedzieć, jakie – i jak się zachowują. Nowym jądrem może być na przykład izotop kryptonu, czyli gaz szlachetny, ale równie dobrze może to być rubid, metal alkaliczny, który będzie zachowywał się zupełnie inaczej wewnątrz reaktora” - mówi dr Miernik.

Model emisji neutronów opóźnionych, zaproponowany przez dr. Miernika, jest rozwinięciem modeli bazujących na statystyce. Kluczowym pomysłem było stworzenie systematyki na podstawie jednego z parametrów, nazywanego gęstością poziomów jądrowych, w taki sposób, aby przewidywania modelu jak najlepiej zgadzały się z pomiarami. Opis skonstruowany wokół tej idei pozwala usystematyzować dotychczas znane jądra atomowe i przewidywać własności egzotycznych, jeszcze niebadanych jąder atomowych.

Pierwsze pomiary właściwości nowych jąder atomowych, pozwalające zweryfikować poprawność modelu, dr Miernik spodziewa się otrzymać dzięki eksperymentom, które niedługo rozpoczną się w japońskim instytucie badawczym RIKEN Nishina Center.

Źródło: www.naukawpolsce.pap.pl


Przeczytaj więcej:

Brak komentarzy. Może czas dodać swój?

Dodaj komentarz

Zaloguj się, aby móc dodać komentarz.

Oceny

Tylko zarejestrowani użytkownicy mogą oceniać zawartość strony
Zaloguj się , żeby móc zagłosować.

Brak ocen. Może czas dodać swoją?
31,993,679 unikalne wizyty