Partnerzy

Astro-Miejsca


URANIA

astroturystyka

100 lat IAU

IAU

Comet

Centrum Nauki Kepler

Planetarium Wenus

ERC

Centrum Nauk Przyrodniczych

Orion,serwis,astronomii,PTA

POLSA

Astronomia Nova

Astronarium

forum astronomiczne

IPCN

Portal AstroNet

Puls Kosmosu

Forum Meteorytowe

kosmosnautaNET

kosmosnautaNET

Nauka w Polsce

astropolis

astromaniak

PTMA

PTR

heweliusz

heweliusz

ESA

Astronomers Without Borders

Hubble ESA

Space.com

Space Place

Instructables

Tu pełno nauki

Konkursy

Olimpiady Astronomiczne
Olimpiada Astronomiczna przebiega w trzech etapach.
Zadania zawodów I stopnia są rozwiązywane w warunkach pracy domowej. Zadania zawodów II i III stopnia mają charakter pracy samodzielnej. Zawody finałowe odbywają się w Planetarium Śląskim. Tematyka olimpiady wiąże ze sobą astronomię, fizykę i astronomiczne aspekty geografii. Olimpiady Astronomiczne


Urania Postępy Astronomii - konkurs dla szkół


astrolabium

Organizatorem konkursu astronomicznego jest Fundacja dla Uniwersytetu Jagiellońskiego a patronat nad akcją sprawuje Obserwatorium Astronomiczne im. Mikołaja Kopernika będące instytutem Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego w Krakowie.
Zobacz szczegóły »

astrolabium

konkurs, astronomiczny

AstroSklepy

Serwis Astro - 30 lat AstroDoświadczenia!

Astro Schopy
 Firma ScopeDome

Planeta Oczu

Astrocentrum

Wszystko o Nas

Logo SA GW, autor Jacek Patka





Forum Astronomiczne PL


BOINC

Classroom

FB

Księżyc


Data: 26-11-2024 01:30:03

faza

Słońce

Na niebie


La Lune

Mapa Nieba

Stellarium Web

TheSkyLive
Skytinel - sieć stacji bolidowych - SN15

Położenie JWST
Where is WEBB


ARTEMIS
ARTEMIS-1


Położenie ISS
The current position of the ISS
tranzyty ISS


The current position of the ISS

Misja KEPLER

ZOONIVERSE odkrywanie planet

EPUP
5282 planet

Astropogoda

Pogoda



sat24, chmury, pogoda


wyładowania atmosferyczne


III Prawo Keplera




Czytelnia


dwumiesięcznik

Urania, numery archiwalne,przedwojenne

Light Pollution

M-WiFi

gwiazdy,zmienne,poradnik,gazeta,pdf,astronomia,pomiary

vademecum, miłośnika, astronomii, dwumiesięcznik, astronomia

astronomia amatorska

Astronautilius

KTW'

kreiner, ziemia i wszechświat

poradnik, miłośnika, astronomii, książka, Tomasz, Rożek

poradnik, miłośnika, astronomii, książka, Rudż, Przemysław

atlas, nieba, książka, astronomia

atlas, księżyca, książka, astronomia

Poradnik Miłośnika Astronomii

Mądre Książki

Dżety zdradzają sekrety najbardziej egzotycznego stanu materii

Nauka LHC Wizualizacja symulacji zderzenia dwóch protonów w którym powstaje mikroskopijna czarna dziura / Credit: CERNTuż po Wielkim Wybuchu Wszechświat był wypełniony „zupą” kwarków i gluonów. Ważny krok ku poznaniu jej właściwości zrobił zespół pracujący przy detektorze ATLAS w akceleratorze LHC.

Gdy w tunelu akceleratora LHC w ośrodku CERN pod Genewą zderzają się jądra ołowiu pędzące
niemal z prędkością światła, materia na ułamki sekund przechodzi do najbardziej egzotycznego stanu znanego współczesnej fizyce: staje się plazmą kwarkowo-gluonową. Nowe informacje o właściwościach tej plazmy, zebrane dzięki analizie strumieni penetrujących ją cząstek, zostały właśnie opublikowane w prestiżowym czasopiśmie „Physical Review Letters” przez międzynarodowy zespół fizyków pracujących przy detektorze ATLAS.


”To ważny wynik, ponieważ pozwala odrzucić część modeli teoretycznych plazmy kwarkowo-gluonowej, które tak silnego tłumienia nie przewidują” — prof. Barbara Wosiek, IFJ PAN

Tuż po uformowaniu się czasoprzestrzeni w Wielkim Wybuchu, Wszechświat wypełniała materia o niezwykłych cechach. Kwarki i gluony, dziś trwale uwięzione we wnętrzach protonów i neutronów, poruszały się swobodnie, tworząc jednorodną „zupę”: plazmę kwarkowo-gluonową. Ten wyjątkowy stan materii, pojawiający się dopiero w temperaturach liczonych w bilionach stopni, fizycy potrafią wytwarzać w akceleratorze LHC, w zderzeniach ciężkich jąder atomowych (ołowiu).

LHC Przekrój przez detektor ATLASBadanie plazmy kwarkowo-gluonowej jest ogromnym wyzwaniem. Pojawia się ona w dość rzadkich zderzeniach, w bardzo małych ilościach. Na dodatek istnieje tylko ułamki sekund: zaraz po powstaniu zaczyna ekspandować pod własnym ciśnieniem, błyskawicznie stygnie i przekształca się w lawiny zwyczajnych cząstek. Co więcej, współczesna fizyka nie dysponuje narzędziami zdolnymi bezpośrednio obserwować kwarki czy gluony. Nie można więc postąpić tak jak np. przy zwykłych pomiarach temperatury: wziąć termometr, wsadzić w plazmę i po prostu poczekać, aż wyświetli się wynik. Potrzebne są znacznie bardziej wyrafinowane metody.

„Na szczęście detektory takie jak ATLAS potrafią rejestrować produkty rozpadów cząstek, które z plazmą kwarkowo-gluonową oddziaływały. Starannie analizując właściwości tych cząstek możemy wyciągać wnioski o cechach samej plazmy”, mówi prof. dr hab. Barbara Wosiek z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, która koordynowała i zatwierdzała prace zespołu z Columbia University, zajmującego się analizą danych zebranych w detektorze ATLAS w 2011 roku.

Najwięcej informacji o plazmie kwarkowo-gluonowej niosą cząstki, które w wyniku zderzenia rozbiegają się „na boki”. Ich specyficzny kierunek ruchu, poprzeczny względem pierwotnego kierunku lotu jąder ołowiu, pozwala je względnie łatwo odróżnić od tysięcy innych cząstek i jednocześnie gwarantuje, że są one rezultatem wczesnego etapu zderzenia. A skoro tak, to musiały tuż po zderzeniu przedrzeć się przez obłok plazmy kwarkowo-gluonowej, by następnie rozpaść się na skupione, wąskie strugi cząstek, nazywane dżetami.

„Te pierwotne cząstki przechodząc przez gęstą i gorącą plazmę tracą energię, co prowadzi do wygaszania/zanikania wysokoenergetycznych dżetów. W trakcie naszej analizy zajmowaliśmy się rekonstrukcją dżetów o bardzo dużych energiach, sięgających 400 gigaelektronowoltów”, uzupełnia prof. Wosiek.

Po zrekonstruowaniu dżetów zarejestrowanych dla zderzeń jąder ołowiu, zespół fizyków zestawił wyniki z wnioskami z analizy zderzeń proton-proton. Idea stojąca za takim porównaniem była prosta. Z dość precyzyjnego opisu teoretycznego zderzeń protonów wynika, że nie może w nich powstawać plazma kwarkowo-gluonowa. Z kolei modele teoretyczne zderzeń ciężkich jąder przewidują formowanie się gęstej plazmy w czołowych zderzeniach jądro-jądro przy bardzo wysokich energiach. Zestawiając wyniki analiz obu rodzajów zderzeń można więc ocenić, jak dżety oddziałują z plazmą.

„W zderzeniach jąder ołowiu zarejestrowaliśmy aż o połowę mniej dżetów niż w zderzeniach protonów. Oznacza to, że cząstki powstałe w pierwotnym akcie zderzenia straciły energię na skutek oddziaływania z plazmą, co w konsekwencji spowodowało wygaszenie wysokoenergetycznych dżetów. To ważny wynik, ponieważ pozwala odrzucić część modeli teoretycznych plazmy kwarkowo-gluonowej, które tak silnego tłumienia nie przewidują”, wyjaśnia prof. Wosiek.

LHC Detektor ATLAS akceleratora LHC / Credit: CERNDetektor ATLAS, w którego budowę od początku były zaangażowane instytucje naukowe z Polski, w tym IFJ PAN, jest niezwykle wyrafinowanym urządzeniem o rozmiarach kilkupiętrowej kamienicy. Zbierane przez niego dane o zderzeniach cząstek płyną ponad 100 milionami kanałów elektronicznych, z których w trakcie typowych pomiarów ponad 99% pracuje poprawnie.

Zderzenia jąder ołowiu to jeden z elementów programu badawczego realizowanego przez międzynarodowe grupy naukowców w największych eksperymentach przy akceleratorze LHC. Główna tematyka badań dotyczy tu jednak zderzeń proton-proton, wykorzystywanych do weryfikowania poprawności współczesnej teorii budowy materii – Modelu Standardowego – oraz do poszukiwania zjawisk wykraczających poza ten opis. Spektakularnym sukcesem fizyków pracujących przy detektorach ATLAS i CMS w LHC było odkrycie w 2012 roku poszukiwanego od półwiecza bozonu Higgsa.

(materiał prasowy IFJ PAN)

Źródło: Kosmonauta.net





Przeczytaj więcej:

Brak komentarzy. Może czas dodać swój?

Dodaj komentarz

Zaloguj się, aby móc dodać komentarz.

Oceny

Tylko zarejestrowani użytkownicy mogą oceniać zawartość strony
Zaloguj się , żeby móc zagłosować.

Brak ocen. Może czas dodać swoją?
31,501,677 unikalne wizyty